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Thin diblock copolymer films on patterned surfaces: Computer simulations
and the Frenkel-Kontorowa model
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We study by direct numerical integration of the dynamical evolution equation the equilibrium configuration
of a diblock copolymer thin film melt on a patterned surface. The surface has a large number of stripes and the
mismatch between the bulk diblock spacing and the stripe width is small. We investigate primarily the forma-
tion of small discommensurations in the incommensurate phase and compare the results with the predictions of
an analogous model of solid-state physics, the Frenkel-Kontorowa model.@S1063-651X~99!13811-X#

PACS number~s!: 61.41.1e, 68.10.Cr, 68.60.2p
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I. INTRODUCTION

Symmetrical diblock copolymers are made up of eq
sized chains consisting ofA andB monomers which are teth
ered together at one end. A bulk melt sample of such cop
mers is theoretically predicted to microphase separate
lamellae@1# consisting of a layer ofA followed by a layer of
B successively. However, experimentally such a well align
bulk sample is not observed, only in local regions of t
sample are well defined lamellae seen. On the whole m
defects and/or dislocations prevent the build up a laye
structure throughout the material. Recently there have b
experimental@2# and theoretical@3–5,7–11# efforts put to-
wards understanding how a well aligned, lamellae sam
may be produced. Such lamellae may have application
lithographic masks and devices@12#. One possible solution is
to place a thin film melt of diblock copolymers onto a pe
odically striped surface@2,12#. The stripes may prefer one o
the other block alternatively. It is hoped that if the strip
diblock potential is sufficiently strong it will induce th
lamellae to align perpendicular and commensurate with
stripes. In such cases a well defined lamellae seque
should be produced throughout the thin film.

The physics of a thin melt film is quite different from th
of a bulk melt sample because of surface interfacial tens
and confinement effects@13,14#. The added effect of a
striped surface makes this a rich and complex physical
tem. Most of the previous numerical studies@3–5# have been
devoted to smaller size systems, e.g., of the order of 10
stripes. These studies are necessarily small because the
three-dimensional and so computational limitations de
mine that the grids cannot be too large. In spite of th
limitations these studies have led to some important cha
terizations of the system. For example, it is clear to obt
perpendicular, well aligned, commensurate lamellae one
quires the mismatch between bulk equilibrium diblock sp
ing, Lb and stripe widthl to be as small as possible and t
A block-upper surface~air! and B block-air interfacial ten-
sions to be the same. It is also probably better to haveLb
.l than Lb,l since in the latter case the lamellae inte
faces can undulate to relieve the strain@5,8#. Recent experi-
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mental studies@2# have produced patterned surfaces w
well defined stripes of a given period. These patterned s
faces are macroscopic and have a very large numbe
stripes. Thus there are some aspects of these large sys
that the finite size studies@3–5# do not capture.

Apart from being of obvious interest to the polymer com
munity this system should also be of interest to traditio
solid-state physicists. This is because it is a one-dimensio
~1D! example of mismatch between two different ‘‘crysta
line’’ materials. Mismatch between two crystalline materia
is a much-studied problem in solid state physics becaus
occurs at the interface between any two crystalline s
stances. In general, two different materials will have diffe
ent lattice constants, and this leads to strain whenever a l
of one substance is deposited epitaxially on another. A c
sic model of this kind of system was proposed early on
Frenkel and Kontorowa~FK! @6#. This FK model considers
what happens when a hypothetical 1D solid with prefer
lattice spacing,ap is placed in a potential with minima
spaced a distanceas apart. If the potential is very strong th
particles sit in the lowest energy states of the potential w
and a commensurate state occurs, i.e., the particle posi
are commensurate with the well minima. However, for
weaker potential a transition to a discommensurate phase
occur. In this phase the particles mainly sit at the bottom
the potential minima. However, periodically a discommen
ration occurs where one or more of the particles sits w
away from the minima. The FK model predicts that this tra
sition is second order. Although this model is well know
and much-studied there have been few, if any, experime
examples of FK systems in 1D. Most examples in pract
occur in two dimensions, where an adsorbate is placed o
crystal surface. A symmetric diblock copolymer film on
striped surface is clearly a strong candidate for study as a
FK system, and indeed this was partly the motivation for t
of our earlier studies@7#. There we showed that in a certa
limit, i.e., d[Lb2l is small, weak surface potentials an
perpendicular alignment of the lamellae, the diblock-str
system was analogous to the FK model. To obtain perp
dicular alignment of the lamellae to the striped surface
diblock-air interfacial tensions should be the same. In t
limit most of the lamellae align commensurate with t
5841 © 1999 The American Physical Society
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stripes, but every so often discommensurations appear. W
Lb is slightly larger thanl these discommensurations shou
be manifested as lamellae with periodic spacing sligh
larger thanl. ~Conversely forLb slightly smaller thanl the
discommensurations should appear as lamellae with spa
slightly smaller thanl.! The discommensurations set in at
critical valuedc such that the commensurate to incomme
surate transition is continuous~or second-order!. The dis-
commensurations are predicted to appear periodically ac
the surface with separationx wherex} ln@(d2dc)

21#. Thus,
one important practical conclusion of this study@7# is that it
is important to have relatively strong striped surface pot
tials andLb as close as possible tol to overcome the for-
mation of discommensurations. Of course, all of these p
dictions depend in part on the mapping between the dibl
model and the FK model. This mapping is good, only in t
limit mentioned above.

One aim of the present study is to determine the valid
of our predictions and, in some sense, how close the dib
system is to the classical FK system. The two systems
different in detail, in that they each have different Hamilt
nians, but we might expect some qualitative and semiqu
titative features to be the same. In particular we would ho
that the diblock system would show the presence of a p
odic array of discommensurations. Besides direct experim
tal observations, simulation studies offer the best test
theory. Monte Carlo simulations are a possible techniq
but due to the fact that we require a large grid we feel i
not a feasible technique for this problem. Other techniq
that could be employed are the Scheutjens-Fleer s
consistent-field method@4# or direct numerical integration o
the dynamical evolution equation@5,15,16#. Of these we nu-
merically integrate the dynamical evolution equation, but
obtain as large as possible grid sizes we restrict our sim
tion to 1D. This restriction means we are limited to th
films, so there is little variation perpendicular to the surfa
This also means we assume translational invariance a
the stripes, so that the kind of undulational instabilities
have discussed previously@8,9,11# are ignored. The gain
from these simplifications is great. We can explore syste
with about 500 stripes and see clear evidence of discomm
surations.

II. BLOCK COPOLYMER MODEL

The technique we will use is a well established meth
for studying phase separation and ordering in binary syst
@15,16#. It has previously been used by Chakrabarti and
workers to study various confined thin diblock copolym
film problems@5,17,18#. It is this formalism we use in ou
study, but we modify it for a 1D problem. In 1D we assum
that the system is invariant in they direction ~along the
stripes! and also in thez direction~perpendicular to the sub
strate! . We now write the free energy of the system in term
of the remaining spatial variablex ~in the direction across the
striped surface!. The free energy is a function of the ord
parameterF(x,t)[rA(x,t)2rB(x,t), wherer i is the den-
sity of the i th component. The free energy is then
en
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F@F~x,t !#

kBT
5hy`H E

0

xl
dxF2

b

2
F21

u

4
F41

K

2
~¹F!2

1BE
0

xl
dx8G~x,x8!F~x,t !F~x8,t !G

1E
0

xl
dxQsin~kx!F~x,t !J , ~1!

whereh is the film thickness,y` is the length of the system
along the stripes, andxl is the size of the system in thex
direction. The parametersb, u, K andB are related to poly-
mer size, etc.@5#. G is the Green’s function satisfying
d2G/dx252d(x2x8). The striped surface-diblock interac
tion is accounted for by the last term and has a sinuso
form with amplitudeQ and wavelength 2p/k. Q is related to
the preference of the striped surface for one block over
other. It is obtained as follows: The striped surface-A-block
interfacial energy isVAS5V01sAsin(kx), whereV0 andsA
are constants in units ofkBT. A similar expression may be
written for the striped surface-B-block energy. Subtracting
the two expressions one finds the overall preference of
striped surface for one block over the other block is given
~neglecting unimportant constant terms! V(x)5(sA
2sB)sin(kx). This is the form of the surface energy term
Eq. ~1!. Thus we identifyQhy`[(sA2sB)/kBT, so thatQ
is essentially the striped surface preference for one bl
over the other divided by film thickness.

Now to determine how the system evolves to equilibriu
below the order-disorder-transition~ODT!, we use the Cahn-
Hilliard equation

]F

]t
5M

]2m

]x2
, ~2!

whereM is the mobility andm(x) is the chemical potentia
at the pointx. To determinem(x) we take the functional
derivative of the free energy@Eq. ~1!# with respect to
the order parameter. Thus applying the operat
M (]2/]x2)(dF/dF) to Eq. ~1! and rescaling, as done b
Chen and Chakrabarti@5#, we obtain the following equation
in dimensionless form,

]F

]t
5

1

2

]2

]x2 S 2F1F32
]2F

]x2 D 2aF2Ak2sin~kx!

2Aeh~x,t !, ~3!

where A}h21(sA2sB)/kBT. The last term on the right-
hand side of the above equation is a random noise term@5#
introduced to mimic the effect of thermal fluctuations.
practice it has an important effect in that it allows the syst
to escape from some metastable equilibrium states. The
rametere is the magnitude of the fluctuations and is set h
to 0.5. The distribution ofh(x,t) is determined by the
fluctuation-dissipation theorem, i.e.,̂ h(x,t)h(x8,t8)&
52¹2d(x2x8)d(t2t8). Equation~3! is appropriately dis-
cretized and we use time steps ofDt50.001. We use lattice
sizes up to 4800 lattice sites with periodic boundary con
tions. The numerical integration begins at timet50 and Eq.
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FIG. 1. ~a! Equilibrium profile of the order parameterF(x) vs x ~measured in units of lattice spacing! for stripes of width 10 lattice sites
(l510) andLb512 in a system ofN54800 lattice sites in total andA50.0009.~b! Order parameter~solid line! for a commensurate region
at a magnified scale compared with~a!. The surface potential is shown as the dashed line~both lines overlap!. ~c! Order parameter~solid line!
for a region enclosing a discommensuration at a magnified scale compared with~a!. The surface potential is shown as the dashed line. At
edges of the discommensuration the order parameter aligns with the stripe potential, while within the discommensuration it doe~d!
Power spectrum vsk, averaged over 10 realizations, forA50.0009.
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~3! is iterated until a stable equilibrium solution is found, i.
until there is no change in the order parameter. For syst
of sizeN54800 lattice sites~results for which we show in
this paper! we used 23107 time steps. InitiallyF is in a
randomly disordered configuration.

III. RESULTS AND DISCUSSION

The free energy functional in Eq.~1!, except for the last
integral, gives a qualitative phase diagram of a block copo
mer melt close to the order-disorder transition@15#. The free
energy functional is an expansion to fourth order in the or
parameter and so is not quantitatively valid in the stro
segregation limit~SSL!. This is borne out by the order pa
rameter profiles~see the figures!, which have a sinusoida
rather than square-wave profile, as in the SSL@19#. This
could be the cause of some quantitative discrepancies
tween our calculations and the FK results@7#, which are
valid in the SSL. Thus we alert the reader to the fact that
results only qualitatively describe the SSL, where both
periments@2# and theories@4,7–11# have been focused.

We use ana value of 0.01 which corresponds to a bu
,
s

-

r
g

e-

r
-

~equilibrium! layer spacing of the lamellae of approximate
Lb512 lattice sites. We initially consider the results for
stripe potential of wavelength 20 lattice sites, i.e.,l510
lattice sites, and an amplitude ofA50.0009. ~RememberA
is proportional to the striped surface preference for one bl
over the other divided by film thickness.! Thusd52 which
is positive, so the surface stripes attempt to compress
lamellae to a size smaller than the bulk value. Figure 1~a!
shows the order parameter as a function of distance along
surface. The order parameter varies rapidly because of
large number of stripes in the sample. What is clear ar
number of regions where the order parameter is of cons
amplitude, separated by smaller regions of larger amplit
~the bumps!. By expanding these two regions@Figs. 1~b! and
1~c!# it is clear these correspond to commensurate regi
and discommensurate regions. Thus, within the flat regi
the lamellae are commensurate with the surface, wherea
the bumps the lamellae are discommensurate with the
face and assume a spacing close to their bulk spacing.
previous theory@7# for this case suggests the discommen
rate lamellae should be stretched compared tol. Indeed, we
find within the discommensuration the lamellae are stretc
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compared to the stripe period, i.e., there are nine stripe w
lengths but only eight lamellar periods. By having these d
commensurations with stretched lamellae, on the glo
scale, the lamellae~on average! are able to come closer to th
bulk equilibrium spacing. Thus, one major result is that
system does show discommensurations. Figure 1~d! shows
the time averaged power spectrum for the order param
profile for the system shown in Fig. 1~a!, averaged over 10
initial starting configurations. The power spectrum show
large, sharp peak atk5240 corresponding to a wavelength
20 units, and a much smaller, broader hump atk'220 cor-
responding to a wavelength of 22 units. The large peak c
responds to lamellae aligning commensurate with the str
in the majority of the lattice, while the smaller hump corr
sponds to lamellae attempting to achieve their bulk spac
in the discommensurations.

In Figs. 2~a! and 2~b! we show the order parameter profi
for l510 ~i.e., the same as Fig. 1! but with two different
amplitudes,A50.0007 andA50.0011. ForA50.0011 we
see fewer discommensurations compared toA50.0009.
Since the stripe potential here is stronger, many more of
lamellae align with the stripes and so only a few discomm
surations appear. ForA50.0007 the converse is true. It
clear from the order parameter profiles that discommens

FIG. 2. Equilibrium profile of the order parameterF(x) vs x for
stripes of width 10 lattice sites (l510) andLb512 in a system of
N54800 lattice sites in total for~a! A50.0007 and ~b! A
50.0011.
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tions do not appear perfectly regularly across the striped
face. The FK model implies that discommensurations sho
be equally spaced. We discuss reasons for this discrepan
the conclusion.

In Fig. 3 we show the order parameter profiles and pow
spectra for two different stripe widths, both of them induci
compression of the lamellae. These arel59.23 ord52.77
and l510.91 ord51.09. In the case ofd52.77, which is
relatively large, we find the critical amplitude, at which di
commensurations first appear, is roughly 0.004. This i
much larger value than ford52 ~see Fig. 1!, and confirms
one’s physical intuition that as the difference between lam
lar period and surface potential wavelength increases
much larger surface potential amplitude is required to al
the lamellae. The power spectrum for this case shows
distinct peaks, one atk5260 corresponding to a waveleng
of 18.46 units, i.e., the surface potential and one atk'195
corresponding to a wavelength of 24.6 or the lamellar peri
In the case ofd51.09 the discommensurations appear as t
bumps~of slightly larger amplitude to the bulk amplitude! in
the profile. This is due to the small surface potential amp
tude that is needed to align the lamellae. The critical am
tude is roughly 0.0003, which is smaller than the previo
cases, as expected. The power spectrum shows, once ag
large peak at the surface potentialk5220 and much smalle
peaks between 200 and 220.

These results show very clearly that discommensurati
do exist and that their density behaves sensibly as a func
of lattice mismatch and potential strength. It would howev
be useful to have a more quantitative idea of the depende
of discommensuration density on these parameters. Acc
ing to the FK model@6,7# the number of discommensuration
D that should appear is given by

D}1/ln@~d2dc!
21#. ~4!

In the strong segregation limit we have previously argued@7#
that the critical mismatchdc is related to the surface ampl
tude via

dc
2

Lb2dc
5S 16Lb

2

3p3hgAB
D A, ~5!

We do not expect this result to hold exactly in the pres
study, since here we are dealing with a system that is
fully in the strong-segregation limit. Our order parame
profile is still close to sinusoidal, and not the square wave
would expect in strong segregation. Nevertheless, provi
dc!Lb we expectdc

2't2A, wheret is a numerical constant
Thus, using the above two relationships we find that
number of discommensurationsD scales with the amplitude
A as

D}1/ln@~d2tA1/2!21#. ~6!

In Fig. 4 we have plotted the number of discommensurati
D versus the surface potential amplitudeA for the case
shown in Figs. 1 and 2. Since Eq.~6! is just a scaling rela-
tionship we cannot plot the numerical curve corresponding
this equation. However, the dashed curve has the same f
tional form as the scaling equation forD. Figure 4 does
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FIG. 3. Equilibrium profile of the order parameterF(x) vs x for stripes of width 9.23 lattice sites (l59.23) andLb512 in a system of
N54800 lattice sites in total forA50.0044. ~b! Power spectrum for same case as in~a!. ~c! Same as~a! except l510.91 andA
50.0004.~d! Power spectrum for same case as~c!. Note the power spectra are for only one realization each.
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show that as the surface potential is increased the numbe
discommensurations decreases continuously, in keeping
the theoretical prediction that the incommensura
commensurate transition is second-order@7,6#.

FIG. 4. Number of discommensurationsD versus surface poten
tial amplitudeA for the case shown in Fig. 1. Points are averages
10 realizations with 95% confidence intervals. The dashed curv
a guide to the eye.
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So far we have only considered integrating the evolut
equation for the case ofd.0, corresponding to discommen
surations where lamellae are stretched. In the converse
of d,0 we have previously shown@8# the diblock-striped
system is unstable to a crinkling instability reminiscent of t
Helfrich-Hurault effect@8,20#. We argued that this instability
would have lower free energy than the undistorted state,
may indeed be the lowest free energy state of the syst
Recent results for this system@5# seem to support this con
clusion. However, for the sake of completeness we cons
here what happens to the present 1D system in the limi
d,0. FK theory@6# predicts that once again discommens
rations should appear regularly across the surface. These
commensurations should appear as lamellae which are c
pressed compared to the commensurate~surface! lamellae.
Figure 5 shows the order parameter profile for the case
l512.5 or d520.5. The discommensurations are no
smaller amplitude waves~indents!, compared to the remain
der of the profile. If one were to magnify the region enco
passing a discommensuration we would see fewer st
wavelengths than lamellar periods, and so the lamellae
compressed in a discommensuration. The power spect
shows a large peak atk'190, corresponding to a wave
length of 12.5, or the stripe width and smaller peaks in
neighborhood ofk5204, corresponding to the bulk lamella
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wavelength. We have also made runs forl514.03 (d
522.03) with similar qualitative results to Fig. 5~a!.

IV. CONCLUSION

We have used a numerical integration of the dynam
evolution equation to study the equilibrium configuration
a diblock copolymer melt on a periodically striped surfac
This technique is useful in that it allows a ‘‘hands-off’’ ap
proach to studying the system; we just start from some r
dom initial condition and let the system evolve. We ha
restricted ourselves to the limit of small difference betwe
lamellar period and stripe width. Our results are one dim
sional so that we can model systems with a relatively la
number of stripes. We thus concentrate on a specific si

FIG. 5. Equilibrium profile of the order parameterF(x) vs x for
stripes of width 12.5 lattice sites (l512.5) andLb512 in a system
of N54800 lattice sites in total forA50.0004.~b! Power spectrum
for same case as in~a!. Note the power spectrum is only for on
realization.
em

d

l
f
.

n-

n
-
e
a-

tion, i.e., surface tensions between blocks and upper sur
are large and similar. Thus, the top surface should remain
and theAB lamellar interface should also be flat. By makin
the system 1D we also do not consider the possibility
mixed ~parallel and perpendicular! lamellae forming@4,5,9#.

We have seen that for relatively large surface potent
the lamellae align with the surface stripes~commensurate
state!, with a spacing ofl units. For small surface potential
the lamellae take on their bulk equilibrium spacing, i.e.,Lb
units. In between these two limits the lamellae can relie
their strain by forming small discommensurations, in whi
the lamellae are stretched (d.0) or compressed (d,0). It
is the former case that we concentrate on here, since
believe in this case such lamellar configurations may ind
be the lowest free energy state. Our system is analogou
the FK system of solid-state physics, and indeed we fi
many similarities between our results and the results p
dicted by the FK model. In particular we find the presence
discommensurations. However, we do not find that these
commensurations are evenly spaced as they would be in
FK model. There are at least three possible explanations
this difference. The first is simple; our system is not exac
the same as the FK system and hence, one does not expe
the details of that model to hold. This is in some sense
satisfactory, since on symmetry grounds we would exp
the defects to be evenly spaced. A second explanation
cerns the size of our system. Although the number of stri
is very large, the number of discommensurations is small
order 10. It may well be that the finite size of the syste
ruins the strict periodicity expected from the FK model. T
third, and most likely explanation concerns the equilibrati
time. It is well-known that in solitonic systems, of which th
FK model is an example, the interactions between the def
decays exponentially. Indeed in the FK model the defe
repel exponentially, with a decay constant which is of t
order of the stripe width@6#. In our system, this means tha
the interaction between discommensurations is very we
since they are often separated by about 50 stripes. This
plies that discommensurations, once formed, do not see
other and have no way of organizing into a periodic arr
This is particularly true in the presence of thermal noi
which might destroy any order. In any case, the dynamics
such organization is likely to be very slow. This may ha
important consequences for the experimental observatio
defects, since response times in polymer systems are alr
very long. Thus, from an experimental point of view ind
vidual discommensurations might be more readily obser
than a periodic array of them.
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